Helicity Gets a New Twist: Straightforward Production of
Polarization Sculpted High-Harmonic Attosecond Waveforms
for Chiral Spectroscopies and Imaging
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Light and Materials Science in the KM Group:

Attosecond Extreme Nonlinear Optlcs

Popmintchev, Science 6265, 2015
Dorney, PRL 118, 2017

aucUm AMO Dynamics at Extreme Spatial and Temporal Scales

Coherent X-ray Imaging
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Uncovering New Ultrafast Materials Science
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Nanoscale Charge, Spin, Energy Transport

Paralial Artiparalin

17

Hoogeboom-Pot, PNAS 112, 2015
Ellis, JACS, 11 2015 3



KM Group and JILA:
MECUm Fxcellent students, collaborators, and advisors

KM Group Spring 2017

»




KM Group and JILA:
MECUm Fxcellent students, collaborators, and advisors

KM Group Spring 2017




KM Group and JILA:
LEcUl Fxcellent students, collaborators, and advisors

Collaborators
KM Group Spring 2017 5

Berleley

N B

VNIV ERSIDAD
B OALA MANCA

) KMLABS

LEADING N ULTRAFAST




NISTHY)

KM Group and JILA:

Excellent students, collaborators, and advisors

KM Group Spring 2017

B OALA MANCA

Collaborators

h* "‘
‘\

E - Berkeley

ltl Y

\‘,\l‘. | |\ SibAD

||| ase s VU e
ANSTERC M g

L KMLABS

LEADING N ULTRAFAST




High Harmonic Generation (HHG):
MEIcUlm | ight Science at the Atomic Frontier and Beyond

The White Whale of the Physical Sciences

- Direct observation of atomic and molecular scale transformations at their natural time and length scales.

Courtesy: Nico Hernandez Chupak, KM Group
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Evolution of HHG:
LIS Perturbative Optics to Extreme Nonlinear Optical Science

- From perturbative optics to extreme nonlinear optical science.
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Microscopic Mechanism of HHG:

LucVlmm Fpitome of Classical Correspondence Principle

> High-harmonic generation is the most extreme nonlinear process in nature.
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]II_A Macroscopic HHG:
wucUlm Attosecond Nonlinear Optics in a K (Nut) Shell

- The generation of bright, coherent beams of X-ray light demands that we solve the currency

exchange problem inherent to nonlinear optics.

- Single atom yield ~ A-6-5

Rundquist, Science, 5368, 1998
Popmintchev, PNAS, 106, 2009
Popmintchev, Nat Photon, 4, 2010
Popmintchev, Science, 6086, 2012
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Custom Tailored EUV and X-ray Light From a Table-Top:
Exquisite Control Over the Entire Up-Conversion Process
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Light and Materials Science in the KM Group:
aucUm AMO Dynamics at Extreme Spatial and Temporal Scales

Attosecond Extreme Nonlinear Optlcs Coherent X-ray Imaging
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Polarization Control in HHG:
LcVUim Coming Full Circle in Quantum Control of High Harmonics

> External control of time, frequency, space in EUV and beyond... Polarization?

Video: Courtesy of Carlos Hernandez-Garcia
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Weihe, J. Opt. Soc. Am. 13, 1996
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Circularly Polarized High Harmonic Generation (CPHHG):
The Attosecond Blast(s) From the Past!

Science:

|

A=395nm Combined FRONTERS

MNUG

(I’ Cp) fields AND DFTICS

Sy —=

>

Eichmann, Phys. Rev. A. 51, 1995 |l
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Milosevic, Phys. Rev. A. 61, 2000
Kfir, Nat. Photon, 9, 2014

Fan, PNAS, 112, 2015

Dorney, PRL, 119, 2017

Many, many, more
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Circularly Polarized Harmonics, You Say?
A LoucUm \\ell Surely We Have Circular Attosecond Pulses!
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Active Control Over the Polarization of High-Harmonic Waveforms:
MEculem Production of Elliptically Polarized Attosecond Pulse Trains! |

o |2w, 395-nm

Q-

(’ |UU, 7/90-nm

Dorney et. al., Phys. Rev. Lett., 119, 2017
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Controlling the Driving Waveform for CPHHG:
Mhcule Active Control over Spectral Chirality
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Dorney et. al., Phys. Rev. Lett., 119, 2017
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Helicity-Selective CPHHG: Frequency-Invariant Chiral Control
MSiculm and Preservation of Spectral Polarization
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Helicity-Selective CPHHG: Frequency-Invariant Chiral Control
and Preservation of Spectral Polarization
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Active Control Over the Polarization of High-Harmonic Waveforms:
Myculem Production of Elliptically Polarized Attosecond Pulse Trains!

,l,

> First demonstration of real-time polarization control of attosecond pulse trains in CPHHG!

l,./1.. = 0.1
x = 0.72
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Active Control Over the Polarization of High-Harmonic Waveforms:
Myculem Production of Elliptically Polarized Attosecond Pulse Trains! |

> First demonstration of real-time polarization control of attosecond pulse trains in CPHH

l,./1. = 0.1
v = 0.72 Neufeild, et al., arXiv:1709.06261, 2017
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Simple Interpretation of Elliptical Control in CPHHG:
MEiculem Perturbative-(ish) Photon Absorption Model

Dorney et al., Phys. Rev. Lett., 119, 2017
Pisanty et al., Phys. Rev. A, 90, 2014
Li, et al., arXiv:1702.04084, 2017
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MEiculem Perturbative-(ish) Photon Absorption Model

Simple Interpretation of Elliptical Control in CPHHG:
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Total Photons Statistical Scaling
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Dorney et al., Phys. Rev. Lett., 119, 2017
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Attosecond Polarization Control at a Price...

Mancuso, Phys. Rev. A., 93, 2016
Dorney et. al., Phys. Rev. Lett., 119, 2017
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Production of Elliptically Polarized Attosecond Waveforms:
Miculem Custom Attosecond Pulses for Chiral Spectroscopies

Dorney et. al., Phys. Rev. Lett., 118, 2017
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]I[A Production of Elliptically Polarized Attosecond Waveforms:
Miculem Custom Attosecond Pulses for Chiral Spectroscopies
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Production of Elliptically Polarized Attosecond Waveforms:
Miculem Custom Attosecond Pulses for Chiral Spectroscopies
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Production of Elliptically Polarized Attosecond Waveforms:
Miculem Custom Attosecond Pulses for Chiral Spectroscopies
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CPHHG and Its Younger Sibling:
MEiculem Bicircular High-Harmonic Spectroscopy (BHHS)!

> CPHHG vs BHHS; two sides of the same coin, yet often far removed from each other.

Baykusheva, PRL, 116, 2016
Dorney, PRL 119, 2017
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]I[A Bicircular High-Harmonic Spectroscopy:
MEicules A Dramatic Response to Electronic Structure

> BHHS shows sensitivity to nuclear topology... What of electronic topology?
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]I[A Bicircular High-Harmonic Spectroscopy:
MEicules A Dramatic Response to Electronic Structure

> BHHS near the CM in Ar exhibits a sharp spectral helicity reversion!
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Bicircular High-Harmonic Spectroscopy:
Micules A Dramatic Response to Electronic Structure |
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Bicircular High-Harmonic Spectroscopy:
A Dramatic Response to Electronic Structure

> BHHS near the CM in Ar exhibits a sharp spectral helicity reversion!
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Siculam Challenging Theoretical Models/Methods...

> The vast differences between typical (B)JHHS of the CM in Ar and our CPHHG
spectra with non-commensurate drivers still demands explanation...

)

29



CPHHG + BHHS + IR Driving Fields:
Siculam Challenging Theoretical Models/Methods...

f,
> The vast differences between typical (B)JHHS of the CM in Ar and our CPHHG ’

spectra with non-commensurate drivers still demands explanation...

Argon 1404/702 nm
1Ip = 15.759 &V

-
S
-
)
-5
E
=
-
=
<
e
=

35 10 45
photon encrgy / eV

29



CPHHG + BHHS + IR Driving Fields:
Siculam Challenging Theoretical Models/Methods...

> The vast differences between typical (B)JHHS of the CM in Ar and our CPHHG
spectra with non-commensurate drivers still demands explanation...

Argon 1404/702 nm
1Ip = 15.759 &V

intensity / arb. u.

35 40 45
photon encrgy / eV

Ar 520torr '

I
COCLOD COCLVLCDCLOD G @ O OC | O

I

= -
[w] o
o ~J
[=) =] =
) N o
: lLee
Intensity Asymmtery '/,

-
o
w

10*

(=]
o
w
|
bt
o

I
—
<

>
]
S~
wn
S~
un
c
e
L
o
<
o
X
=
(F 8
M
c
o
=
—
(0
I

[
o
[

40 45 50 55
Photon Energy (eV)

(o]
w

29



CPHHG + BHHS + IR Driving Fields:
Siculam Challenging Theoretical Models/Methods...

> The vast differences between typical (B)JHHS of the CM in Ar and our CPHHG
spectra with non-commensurate drivers still demands explanation...

Argon 1404/702 nm

b = 15.750 oV > Difterent spectral positions of CM

> Lack of suppression near CM for IR drivers

intensity / arb. u.

> Distinct harmonics after CM for IR drivers

5. a0 45 : > Effects of pressure on spectral helicity?

photon encrgy / eV

=
o
~
(g
=

Intensity Asymmtery "</,

Ar 520torr '

I
COCLOD COCLVLCDCLOD G @ O OC | O

I

=
(=]
(=]
=]

-
o
w

10*

Harmonic Flux (photons/s/eV)
o,
] |

[
o
[

40 45 50 55
Photon Energy (eV)

(o]
w

29



CPHHG + BHHS + IR Driving Fields:
Siculam Challenging Theoretical Models/Methods...

> The vast differences between typical (B)JHHS of the CM in Ar and our CPHHG
spectra with non-commensurate drivers still demands explanation...

Argon 1404/702 nm

b = 15.750 oV > Difterent spectral positions of CM

> Lack of suppression near CM for IR drivers
> Distinct harmonics after CM for IR drivers

photon encrgy / eV

5. a0 45 : > Effects of pressure on spectral helicity?

=
o
~
(g
=

Intensity Asymmtery "</,

Ar 520torr '

I
COCLOD COCLVLCDCLOD G @ O OC | O

=
(=]
(=]
=]

symmetry

-
o
w

-
~
3
-

10*

|
e
o

Intensity A

’_l
o
w

I
—
<

Harmonic Flux (photons/s/eV)
[
O.

40 45 50 55
Photon Energy (eV)

(o]
w

S 40 45 ¢ 55
Average Fhoto Energy (eV)

29



Bicircular HHG and HHS:
Mhculem A Versatile Light Source for Chiral Spectroscopies and Dynamics!

> Straightforward, versatile control of the attosecond polarization, all while preserving the
spectral circularity of the harmonics!
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CPHHG from Linearly Polarized HHG Drivers:
Eiculmm A New (or Lack of) Twist in Thinking

> Although CPHHG is a robust and versatile light source for ultrafast chiral
spectroscopies, it's not without it's downfalls...

> Lower flux for CPHHG compared to linear HHG...
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A Common-Path, Ultra-stable, Interferometer for CPHHG and
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Wait a Minute... Do We Actually Need the Spectrometer?
NISTHY)
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> The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics

in the HHG spectrum that exhibit dichroic absorption...
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> The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics
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Wait a Minute... Do We Actually Need the Spectrometer?
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> The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics
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Wait a Minute... Do We Actually Need the Spectrometer?

NISTHY)

> The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics
in the HHG spectrum that exhibit dichroic absorption...
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Wait a Minute... Do We Actually Need the Spectrometer?

NISTHY)

> The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics
in the HHG spectrum that exhibit dichroic absorption...
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Wait a Minute... Do We Actually Need the Spectrometer?

> The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics
in the HHG spectrum that exhibit dichroic absorption...
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Wait a Minute... Do We Actually Need the Spectrometer?

NISTHY)

> The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics
in the HHG spectrum that exhibit dichroic absorption...
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Temporal Evolution of Two-Focal Spot CPHHG: _
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> So far, everything has been in the spectral domain. What of the temporal structure?
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Temporal Evolution of Two-Focal Spot CPHHG:
MEcUlmm Supercontinuua and Isolated, Circular Attosecond Pulses!

> So far, everything has been in the spectral domain. What of the temporal structure?
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Mhiculem Versatile Light Sources for Advanced Spectroscopies

> Helicity-selective CPHHG via w-2w amplitude control

« "On-demand” ellipticity of APTs with simple intensity mixing
* Fully compatible with existing phase-matching schemes
* Fully compatible with time-gating techniques
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Production and Control of Elliptically Polarized Waveforms:
Mhiculem Versatile Light Sources for Advanced Spectroscopies

> Helicity-selective CPHHG via w-2w amplitude control
«  "On-demand” ellipticity of APTs with simple intensity mixing & -18 2/ 1o = 01 2o/l = 25
* Fully compatible with existing phase-matching schemes W+, *

«  Fully compatible with time-gating techniques — e
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> Single-helicity CPHHG spectra via CM-Induced Effect % .
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» Bright, single-helicity CPHHG spectra
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* CM-induced effects in HHG are robust to generating conditions
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Production and Control of Elliptically Polarized Waveforms:
Mhiculem Versatile Light Sources for Advanced Spectroscopies

> Helicity-selective CPHHG via w-2w amplitude control
«  "On-demand” ellipticity of APTs with simple intensity mixing & -18 2/ 1o = 01 2o/l = 25
* Fully compatible with existing phase-matching schemes W+, *

«  Fully compatible with time-gating techniques — e

Argasjet

> Single-helicity CPHHG spectra via CM-Induced Effect % .
2

W 395.nm, LCP
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» Bright, single-helicity CPHHG spectra
« Single-helicity CPHHG spectrum = fully circular pulse trains!
* CM-induced effects in HHG are robust to generating conditions

> Phase-locked pulse pairs for spatiospectral chiral
spectroscopies

* Microscopic physics is identical to linear, one-color HHG

» Single arm geometry results in ultrahigh stability

« Combined with timing information, can allow for
hyperspectral imaging of chiral systems
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Production and Control of Elliptically Polarized Waveforms:

Mhiculem Versatile Light Sources for Advanced Spectroscopies

> Helicity-selective CPHHG via w-2w amplitude control

> Single-helicity CPHHG spectra via CM-Induced Effect

Fully compatible with existing phase-matching schemes
Fully compatible with time-gating techniques

Bright, single-helicity CPHHG spectra
Single-helicity CPHHG spectrum = fully circular pulse trains!
CM-induced effects in HHG are robust to generating conditions

] S dulated EUV magnet
. . . un:f_l?iﬁatggseilt? e uac(:rcular c;?:hro?s:rf
> Phase-locked pulse pairs for spatiospectral chiral mgnetic
Spectroscop|es plate weeges lens sample D ‘
* Microscopic physics is identical to linear, one-color HHG 4 ‘ ,gas,et -
» Single arm geometry results in ultrahigh stability . —ransserse postin___, spatially
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Combined with timing information, can allow for
hyperspectral imaging of chiral systems
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