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Light and Materials Science in the KM Group: 
AMO Dynamics at Extreme Spatial and Temporal Scales

Attosecond Extreme Nonlinear Optics 

Uncovering New Ultrafast Materials Science Nanoscale Charge, Spin, Energy Transport

Coherent X-ray Imaging
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High Harmonic Generation (HHG):  
Light Science at the Atomic Frontier and Beyond

The White Whale of the Physical Sciences 

- Direct observation of atomic and molecular scale transformations at their natural time and length scales.  
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Microscopic Mechanism of HHG:  
Epitome of Classical Correspondence Principle

➢   High-harmonic generation is the most extreme nonlinear process in nature. 

QM: Kulander, Schafer, Krause. SILAP 1992

Classical: Corkum. PRL 1993
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Macroscopic HHG:  
Attosecond Nonlinear Optics in a K (Nut) Shell

- The generation of bright, coherent beams of X-ray light demands that we solve the currency       
exchange problem inherent to nonlinear optics.      

- Single atom yield ∼ 𝜆-6.5  

Rundquist, Science, 5368, 1998 
Popmintchev, PNAS, 106, 2009 
Popmintchev, Nat Photon, 4, 2010 
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Custom Tailored EUV and X-ray Light From a Table-Top:  
Exquisite Control Over the Entire Up-Conversion Process
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Polarization Control in HHG: 
Coming Full Circle in Quantum Control of High Harmonics

➢ External control of time, frequency, space in EUV and beyond… Polarization?

Single-Color Elliptical Driver

Video: Courtesy of Carlos Hernandez-Garcia

Budil, Phys. Rev. A. 48, 1993 
Weihe, J. Opt. Soc. Am. 13, 1996 

Single-Color Linear Driver
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Reshaping the Frontier of Attosecond Science
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Circularly Polarized High Harmonic Generation (CPHHG): 
The Attosecond Blast(s) From the Past!

Eichmann, Phys. Rev. A. 51, 1995 
Long, Phys. Rev. A. 52, 1995 
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Circularly Polarized Harmonics, You Say? 
Well, Surely We Have Circular Attosecond Pulses!

Single Atom
Wavefront Control

Macroscopic Control
Medisauskas, PRL, 115, 2015 
Milosevic, Opt. Lett. 40, 2015 
Hernandez-Garcia, Phys. Rev. A. 93, 2016 
Huang, CLEO 2016, paper JTh4A.7 
Kfir, J. Phys. B., 49, 2016 
Li, Opt. Quant. Electron. 49, 2017 
Lerner, Opt. Lett. 42, 2017 
Skantzakis, Sci. Rep., 6, 2016 
Yuan, Phys. Rev. Lett. 110, 2013 
Zhang, Opt. Lett., 42, 2017
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Active Control Over the Polarization of High-Harmonic Waveforms: 
Production of Elliptically Polarized Attosecond Pulse Trains!

Dorney et. al., Phys. Rev. Lett., 119, 2017
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Active Control over Spectral Chirality
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Dorney et. al., Phys. Rev. Lett., 119, 2017

SFA Simulation in Ar
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➢ First demonstration of real-time polarization control of attosecond pulse trains in CPHHG!

Active Control Over the Polarization of High-Harmonic Waveforms: 
Production of Elliptically Polarized Attosecond Pulse Trains!

Neufeild, et al., arXiv:1709.06261, 2017

Instantaneous Optical Chirality

Non-Instantaneous Optical Chirality
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Simple Interpretation of Elliptical Control in CPHHG: 
Perturbative-(ish) Photon Absorption Model

Dorney et al., Phys. Rev. Lett., 119, 2017 
Pisanty et al., Phys. Rev. A, 90, 2014 
Li, et al., arXiv:1702.04084, 2017
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Bicircular High-Harmonic Spectroscopy: 
A Dramatic Response to Electronic Structure 

➢ BHHS near the CM in Ar exhibits a sharp spectral helicity reversion!

p- orbital
p+ orbital

No CM = No Spectral Modulation
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➢ Straightforward, versatile control of the attosecond polarization, all while preserving the 
spectral circularity of the harmonics!
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Wait a Minute… Do We Actually Need the Spectrometer?

➢ The polarization pattern in the far-field (revealed by MCD) is the result of all harmonics 
in the HHG spectrum that exhibit dichroic absorption…

Nearly Identical MCD Spectra from Different Samples Measured Months Apart
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