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Light and Materials Science in the KM Group: 
AMO Dynamics at Extreme Spatial and Temporal Scales

Attosecond Extreme Nonlinear Optics 

Ultrafast Materials Science  Nano-Molecular Spectroscopy and Dynamics

Coherent x-ray Imaging
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Fundamental Science Research… Who Cares?

”Oh, you do scientific research? Neat! What exactly are you working on???”
Mastering Fundamentals Understanding and Manipulating Nature!

”If ya want to dunk,  
make 3’s, and break knees,  

ya gotta learn how to  
dribble, pass, pivot, etc.”

Blue LEDs (2014)

Laser (1964)

G Proteins (2012)

CCDs Detectors 
(2009)

Green Fluorescent 
Protein (2008)

• Basic research 

• Small-scale systems 

• Idealized environments 

• Little (initial) real world 
impact
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Fundamental Light Science in the KM Group: 
Ultrafast Lasers, Nature’s Fastest Pancakes 

• Most lasers we see in day-to-day life are continuous wave lasers.

• Ultrafast lasers emit light in extremely short, high intensity pulses.

CW Laser Light 

Precise frequency/wavelength 
High Average Power 

Very Long Term Stability 
Easily Engineered/Designed

UF Laser Light 

Many Frequencies/Wavelengths 
Very High Intensity 

Flashes “on” for 10-9 – 10-15 s 
More Complicated to Design

10-9 – 10-15 s105 – 10-6 s



�9

Ultrafast Laser Amplifiers in the KM Group: 
Complicated Beasts!



�9

Ultrafast Laser Amplifiers in the KM Group: 
Complicated Beasts!

Laser 1 
“oscillator”

Laser 3 
“amplifier”

Laser 2 
“pump”



�9

Ultrafast Laser Amplifiers in the KM Group: 
Complicated Beasts!

Laser 1 
“oscillator”

Laser 3 
“amplifier”

Laser 2 
“pump”



�10

Ultrafast Laser Amplifiers in the KM Group: 
Really Big Freakin’ Lasers!



�10

Ultrafast Laser Amplifiers in the KM Group: 
Really Big Freakin’ Lasers!



�10

Ultrafast Laser Amplifiers in the KM Group: 
Really Big Freakin’ Lasers!



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?

• Unfortunately, it is extremely difficult ☹ 

• X-rays are very high in energy 

• Other competing processes in laser material



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?

• Unfortunately, it is extremely difficult ☹ 

• X-rays are very high in energy 

• Other competing processes in laser material

E2

E1

B21

A21



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?

• Unfortunately, it is extremely difficult ☹ 

• X-rays are very high in energy 

• Other competing processes in laser material

E2

E1

B21

A21



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?

• Unfortunately, it is extremely difficult ☹ 

• X-rays are very high in energy 

• Other competing processes in laser material

E2

E1

B21

A21

Bad!

Good!



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?

• Unfortunately, it is extremely difficult ☹ 

• X-rays are very high in energy 

• Other competing processes in laser material

E2

E1

B21

A21

Bad!

Good!



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?

• Unfortunately, it is extremely difficult ☹ 

• X-rays are very high in energy 

• Other competing processes in laser material

E2

E1

B21

A21

SDI  
(Star Wars)

Bad!

Good!



�11

Fundamental Light Science in the KM Group: 
How Do We Make an X-ray Laser? 

• So… We already have lasers and x-rays... Is it really that hard to combine them?

• Unfortunately, it is extremely difficult ☹ 

• X-rays are very high in energy 

• Other competing processes in laser material

E2

E1

B21

A21

SDI  
(Star Wars)

Free Electron X-ray Laser 
Hamburg, DE

Bad!

Good!
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Coherent, Zeptosecond, keV X-rays

Bright, Isolated HarmonicsPhase-matched Isolated Attosecond Pulses

Chen, PNAS, 111, 2014 
Popmintchev, Science, 6086, 2012  
Popmintchev, Science, 6265, 2015 
Fan, PNAS, 2015

Elliptical and Circularly Polarized Harmonics
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Tailored HHG Waveforms: 
Ideal Probes for the Nano and Atto Worlds

Nanoscale Imaging/Dynamics Nanoscale Mechanical 
Properties, Energy Transport

Charge/Energy Flow in  
Molecular/Nano Systems

Spin Transport in Magnetic 
Materials

Unraveling Coupled Dynamics 
in Condensed Materials

CDISEM
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X-Ray Movies: 
Watching Nanoscale Material Dynamics in Real Time!

R. M. Karl, et al.  Proc. CLEO,  Post deadline, JTh5C.8. (2017)
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    emerge with properties very different from bulk materials. 

• A (nearly) everyday example? Quantum dots!

• However, methods of characterizing these nanoscale properties are 
    difficult, time consuming, or only measure bulk properties! 

• Solution? Use HHG light to specifically probe emergent nano-behavior. 

Time (ps)

• Scaling down the size of the dot results in emission of different colors.
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Resolving Attosecond Time Delays in Photoionization: 
The Photoelectric Effect Takes It’s Time 

• Contrary to popular belief, photoionization is not an instantaneous process! 

• It takes time for electrons to leave their home, and the time it takes depends 
upon where they live.

Shortest state-resolved lifetime measured…~ 200 attoseconds!

atto-ARPES



�29

Distinguishing Attosecond Electron-Electron  
Interactions in Transition Metals

• The time it takes an electron to leave a material is highly dependent on the 
local environment…



�29

Distinguishing Attosecond Electron-Electron  
Interactions in Transition Metals

• The time it takes an electron to leave a material is highly dependent on the 
local environment…



�29

Distinguishing Attosecond Electron-Electron  
Interactions in Transition Metals

• The time it takes an electron to leave a material is highly dependent on the 
local environment…



�29

Distinguishing Attosecond Electron-Electron  
Interactions in Transition Metals

• The time it takes an electron to leave a material is highly dependent on the 
local environment…



�29

Distinguishing Attosecond Electron-Electron  
Interactions in Transition Metals

• The time it takes an electron to leave a material is highly dependent on the 
local environment…



�30

Quantifying the Ultrafast Laser-Induced 
Demagnetization of Magnetic Films

• Magnetic materials are promising candidates for the next revolution of data 
storage devices, but mechanism is not well understood…



�30

Quantifying the Ultrafast Laser-Induced 
Demagnetization of Magnetic Films

• Magnetic materials are promising candidates for the next revolution of data 
storage devices, but mechanism is not well understood…



�30

Quantifying the Ultrafast Laser-Induced 
Demagnetization of Magnetic Films

• Magnetic materials are promising candidates for the next revolution of data 
storage devices, but mechanism is not well understood…



�30

Quantifying the Ultrafast Laser-Induced 
Demagnetization of Magnetic Films

• Magnetic materials are promising candidates for the next revolution of data 
storage devices, but mechanism is not well understood…



�30

Quantifying the Ultrafast Laser-Induced 
Demagnetization of Magnetic Films

• Magnetic materials are promising candidates for the next revolution of data 
storage devices, but mechanism is not well understood…



�30

Quantifying the Ultrafast Laser-Induced 
Demagnetization of Magnetic Films

• Magnetic materials are promising candidates for the next revolution of data 
storage devices, but mechanism is not well understood…



�31

Creating a New Class of X-Ray Lasers: 
Pushing the Limits of Attosecond Science

•  As we discover new physicochemical phenomena, we will need 
better lasers to understand how these materials work… 

• As an example, electronic dynamics > 1 eV take place on 
attosecond times scales (e.g., semiconductor light absorpion).



�31

Creating a New Class of X-Ray Lasers: 
Pushing the Limits of Attosecond Science

•  As we discover new physicochemical phenomena, we will need 
better lasers to understand how these materials work… 

• As an example, electronic dynamics > 1 eV take place on 
attosecond times scales (e.g., semiconductor light absorpion).

Coherent harmonics in the keV range!



�31

Creating a New Class of X-Ray Lasers: 
Pushing the Limits of Attosecond Science

•  As we discover new physicochemical phenomena, we will need 
better lasers to understand how these materials work… 

• As an example, electronic dynamics > 1 eV take place on 
attosecond times scales (e.g., semiconductor light absorpion).

Coherent harmonics in the keV range!

keV HHG Beam



�31

Creating a New Class of X-Ray Lasers: 
Pushing the Limits of Attosecond Science

•  As we discover new physicochemical phenomena, we will need 
better lasers to understand how these materials work… 

• As an example, electronic dynamics > 1 eV take place on 
attosecond times scales (e.g., semiconductor light absorpion).

Coherent harmonics in the keV range!

keV HHG Beam



�31

Creating a New Class of X-Ray Lasers: 
Pushing the Limits of Attosecond Science

•  As we discover new physicochemical phenomena, we will need 
better lasers to understand how these materials work… 

• As an example, electronic dynamics > 1 eV take place on 
attosecond times scales (e.g., semiconductor light absorpion).

Coherent harmonics in the keV range!

keV HHG Beam



�32

Creating Isolated Attosecond Pulses to Capture 
The Fastest Materials Dynamics

• Carefully changing the “tune” of the HHG process yields isolated attosecond pulses!



�32

Creating Isolated Attosecond Pulses to Capture 
The Fastest Materials Dynamics

• Carefully changing the “tune” of the HHG process yields isolated attosecond pulses!



�32

Creating Isolated Attosecond Pulses to Capture 
The Fastest Materials Dynamics

• Carefully changing the “tune” of the HHG process yields isolated attosecond pulses!



�33

Generating Bright, Narrowband Harmonics for  
Elemental Absorption Spectroscopy

• Driving the HHG process with UV light yield bright, narrowband harmonics 
spanning many elemental absorption edges!



�33

Generating Bright, Narrowband Harmonics for  
Elemental Absorption Spectroscopy

• Driving the HHG process with UV light yield bright, narrowband harmonics 
spanning many elemental absorption edges!



�33

Generating Bright, Narrowband Harmonics for  
Elemental Absorption Spectroscopy

• Driving the HHG process with UV light yield bright, narrowband harmonics 
spanning many elemental absorption edges!



�33

Generating Bright, Narrowband Harmonics for  
Elemental Absorption Spectroscopy

• Driving the HHG process with UV light yield bright, narrowband harmonics 
spanning many elemental absorption edges!



�33

Generating Bright, Narrowband Harmonics for  
Elemental Absorption Spectroscopy

• Driving the HHG process with UV light yield bright, narrowband harmonics 
spanning many elemental absorption edges!



�34

Future of Ultrafast Light and Materials Science: 
Probing Nature at Its Fundamental Limits

Real Time Functional Imaging Attosecond Dynamics

Structured Light Beams for 
Advanced Spectroscopies

New Sources of Ultrafast Laser 
Light

Tracking the Ultrafast Migration of 
Charge in Correlated Materials 
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