Attosecond Extreme Ultraviolet Beams with Time-Varying Orbital Angular Momentum: the Self-Torque of Light

Kapteyn-Murnane Group, JILA–University of Colorado Boulder Postdeadline Session III (JTh5C), CLEO USA 2019

May 9th, 2019

¹Allen, et al. *Phys. Rev. A.*, **45**, 1992 ²Yao, et al. *Adv. Opt. Photonics* **3**, 2011 The Orbital Angular Momentum (OAM) of Light: <u>Robust Optical Property Enabling Exciting Technologies</u> Laguerre-Gaussian Beams¹ $L_{p,\ell}(\rho, \phi, z) = A_{p,\ell}(\rho, \phi, z)e^{-i\ell\phi}$

Intensity and Phase Profiles² l = 1, p = 0 l = -1, p = 0 l = 1, p = 2 $l_1 + l_5$

¹Allen, et al. *Phys. Rev. A.*, **45**, 1992 ²Yao, et al. *Adv. Opt. Photonics* **3**, 2011

The Orbital Angular Momentum (OAM) of Light: Robust Optical Property Enabling Exciting Technologies NISTRU Laguerre-Gaussian Beams¹ Micromanipulation³ $L(\rho, \phi, z) = A_{p,\ell}(\rho, \phi, z) e^{-i\ell\phi}$ Superresolution Imaging^{4,5} Laser 1. Laner 2. writation STED hase plate See >200 nm Objective Observation <200 nm Intensity and Phase Profiles² l = 1, p = 0 l = -1, p = 0 l = 1, p = 2 $l_1 + l_5$

¹Allen, et al. *Phys. Rev. A.*, **45**, 1992 ²Yao, et al. *Adv. Opt. Photonics* **3**, 2011

The Orbital Angular Momentum (OAM) of Light: NISTRU Robust Optical Property Enabling Exciting Technologies Laguerre-Gaussian Beams¹ Micromanipulation³ $L(\rho, \phi, z) = A_{p,\ell}(\rho, \phi, z) e^{-i\ell\phi}$

Intensity and Phase Profiles² l = 1, p = 0 l = -1, p = 0 l = 1, p = 2 $l_1 + l_5$

¹Allen, et al. Phys. Rev. A., **45**, 1992 ²Yao, et al. Adv. Opt. Photonics **3**, 2011

Superresolution Imaging^{4,5}

Telecommunications/Data Transfer⁶

³Padgett, Opt. Express **25**, 2017 ⁴Vicidomini, et al. Nat. Methods **15**, 2018 ⁵Honigmann, et al., *LaserFocusWorld*, 2012 ⁶Willner, et al, Adv. Opt. Photonics 7, 2015 ⁷Cardano, et al. *Sci. Adv.* **1**, 2015

Quantum Logic And Information⁷ QW QW unit

QW

The Orbital Angular Momentum (OAM) of Light: NISTRU Robust Optical Property Enabling Exciting Technologies Laguerre-Gaussian Beams¹ Micromanipulation³ $L(\rho, \phi, z) = A_{p,\ell}(\rho, \phi, z) e^{-i\ell\phi}$

Intensity and Phase Profiles² l = 1, p = 0 l = -1, p = 0 l = 1, p = 2 $l_1 + l_5$

¹Allen, et al. Phys. Rev. A., **45**, 1992 ²Yao, et al. Adv. Opt. Photonics **3**, 2011

Superresolution Imaging^{4,5}

Telecommunications/Data Transfer⁶

³Padgett, Opt. Express **25**, 2017 ⁴Vicidomini, et al. Nat. Methods **15**, 2018 ⁵Honigmann, et al., *LaserFocusWorld*, 2012 ⁶Willner, et al, Adv. Opt. Photonics 7, 2015 ⁷Cardano, et al. *Sci. Adv.* **1**, 2015

Quantum Logic And Information⁷ QW QW unit

QW

Controlling Optical OAM to Control Matter: Macro to Nano and Static to Ultrafast Vortex Beams NISTAU

Optical OAM THz-Visible

Beijersbergen, et al. Opt. Commun. 96, 1993 Beijersbergen, et al. Opt. Commun. 112, 1994

Helical beam TEM Spiral Phase Plate

Marrucci, et al. PRL 96, 2006

Yue, et al. Nat. Commun. 9, 2018

¹Rundquist, et al. *Science*, **280**, 1998
²Bartels, et al. *Science* **297**, 2002
³Zhang, et al. *Opt. Lett.* **29**, 2004

⁴Chen, et al. *PRL*, **105**, 2010
⁵Popmintchev, et al. *Science*, **336**, 2012 (mid-IR drivers)
⁶Popmintchev, et al. *Science*, **350**, 2015 (UV drivers)

30nm HHG beam (1998/2002)^{1,2}

13nm HHG beam (2004)³

3nm HHG beam (2010)⁴

1nm HHG beam (2012/2015)^{5,6}

¹Rundquist, et al. *Science*, **280**, 1998
²Bartels, et al. *Science* **297**, 2002
³Zhang, et al. *Opt. Lett.* **29**, 2004

263 nm 393 nm

785 nm 1300 nm 2000 nm

4000 nm

⁴Chen, et al. *PRL*, **105**, 2010
⁵Popmintchev, et al. *Science*, **336**, 2012 (mid-IR drivers)
⁶Popmintchev, et al. *Science*, **350**, 2015 (UV drivers)

30nm HHG beam (1998/2002)^{1,2}

13nm HHG beam (2004)³

3nm HHG beam (2010)⁴

1nm HHG beam (2012/2015)^{5,6}

¹Rundquist, et al. *Science*, **280**, 1998
²Bartels, et al. *Science* **297**, 2002
³Zhang, et al. *Opt. Lett.* **29**, 2004

263 nm 393 nm

⁴Chen, et al. *PRL*, **105**, 2010
⁵Popmintchev, et al. *Science*, **336**, 2012 (mid-IR drivers)
⁶Popmintchev, et al. *Science*, **350**, 2015 (UV drivers)

Generating Dynamic, Coherent Vortex Beams in the EUV: The Self-Torque of Light

Generating Dynamic, Coherent Vortex Beams in the EUV: The Self-Torque of Light

Smooth, Continuous, Variation of OAM!

Smooth, Continuous, Variation of OAM!

OAM HHG Selection Rules when Driven by Multiplexed OAM Beams¹

$$\ell_q = n_1 \ell_1 + n_2 \ell_2$$
 $n_1 + n_2 = \text{odd}$

Smooth, Continuous, Variation of OAM!

 $\begin{array}{l} \underbrace{\text{OAM HHG Selection Rules when}}_{\text{Driven by Multiplexed OAM Beams}^{1}} \\ \ell_{q} = n_{1}\ell_{1} + n_{2}\ell_{2} \qquad n_{1} + n_{2} = \text{odd}} \\ \underbrace{\text{Mean OAM at Time (t) for Harmonic (q)}}_{\overline{\ell}_{q}} \\ \overline{\ell}_{q}(t) = q \left[(1 - \overline{\eta}(t))\ell_{1} + \overline{\eta}(t)\ell_{2} \right]} \\ \\ \overline{\eta}(t) = \frac{A_{\ell=2}(t)}{A_{\ell=1}(t) + A_{\ell=2}(t)} \end{array}$

Smooth, Continuous, Variation of OAM!

OAM HHG Selection Rules when Driven by Multiplexed OAM Beams¹ $\ell_q = n_1 \ell_1 + n_2 \ell_2$ $n_1 + n_2 = \text{odd}$ Mean OAM at Time (t) for Harmonic (q) $\left|\overline{\ell}_{q}(t) = q\left[(1 - \overline{\eta}(t))\ell_{1} + \overline{\eta}(t)\ell_{2}\right]\right|$ $\bar{\eta}(t) = \frac{A_{\ell=2}(t)}{A_{\ell-1}(t) + A_{\ell-2}(t)}$ Width of OAM Spectrum at Time (t)

 $\sigma_{\ell_a} = |\ell_2 - \ell_1| \sqrt{p\bar{\eta}(t)(1 - \bar{\eta}(t))}$

 $\overline{\ell}$,

Smooth, Continuous, Variation of OAM!

¹Rego, et. al. *PRL* **117**, 2016 ²Rego and **Dorney**, et. al. *Science* 2019 (Accepted) OAM HHG Selection Rules when Driven by Multiplexed OAM Beams¹

$$\ell_q = n_1 \ell_1 + n_2 \ell_2$$
 $n_1 + n_2 = \text{odd}$

<u>Mean OAM at Time (t) for Harmonic (q)</u>

$$(t) = q \left[(1 - \bar{\eta}(t)) \ell_1 + \bar{\eta}(t) \ell_2 \right]$$
$$\bar{\eta}(t) = \frac{A_{\ell=2}(t)}{A_{\ell=1}(t) + A_{\ell=2}(t)}$$

 $\frac{\text{Width of OAM Spectrum at Time (t)}}{\sigma_{\ell_q}} = |\ell_2 - \ell_1| \sqrt{p\bar{\eta}(t)(1 - \bar{\eta}(t))}$

 $\frac{\text{Self-Torque of Light!}}{\xi_q = d \,\overline{\ell}_q(t)/dt}$

Spatial Profile of Self-Torqued EUV Beam

Spatial Profile of Self-Torqued EUV Beam

$$\frac{d\bar{\ell}_q(t,\phi)}{dt} = \frac{d\varphi_q(\phi,t;\bar{\ell}_q)}{dt} \quad \omega_q(t,\phi) = \frac{d\varphi_q(t,\phi)}{dt}$$

Spatial Profile of Self-Torqued EUV Beam

$$\frac{d\bar{\ell}_{q}(t,\phi)}{dt} = \frac{d\varphi_{q}(\phi,t;\bar{\ell}_{q})}{dt} \quad \omega_{q}(t,\phi) = \frac{d\varphi_{q}(t,\phi)}{dt}$$
$$\omega_{q}(t,\phi) = \frac{d\varphi_{q}(t,\phi)}{dt} = \omega_{q} + \frac{d\ell_{q}(t)}{dt} \phi \approx \omega_{q} + \frac{\xi_{q}\phi}{\delta t}$$

Rego and Dorney, et. al. Science 2019 (Accepted)

ITTAN Experimental Generation of Self-Torqued EUV Beams: Realization of the Self-Torque of Light

Control of Optical Self-Torque

 $\xi_{q} = d\bar{\ell}_{q}(t)/dt \qquad \bar{\ell}_{q}(t) = q[(1-\bar{\eta}(t))\ell_{1} + \bar{\eta}(t)\ell_{2}]$

The Confirmation and Control of Optical Vortices from Visible to EUV:

Control of Optical Self-Torque

 $\xi_{q} = d \overline{\ell}_{q}(t) / dt \qquad \overline{\ell}_{q}(t) = q \left[(1 - \overline{\eta}(t)) \ell_{1} + \overline{\eta}(t) \ell_{2} \right]$

Control of Optical Self-Torque

 $\xi_q = d \,\overline{\ell}_q(t) / dt$

$$q(t) = q[(1 - (\bar{\eta}(t)))\ell_1 + (\bar{\eta}(t))\ell_2]$$

An Entirely New Class of Light Beams in the EUV: Self-Torqued Harmonics with Ultrafast OAM > Prediction and description of a new property of light, Fime-dependent OAM o Scheme for the generation of self-torque, associated with a time-variation of OAM. EUV beams with self-torque harmonic Time-Delayed. > Self-torque endows unique properties to coherent Dual-Vortex IB Laser light forms (time-varying OAM, azimuthal frequency HHG Medium chirp). Azimuthal frequency chirp of if-torqued EUV beams > Self-torqued light beams synthesized via HHG, so far the only method for producing self-torqued light.

Unique light source for controlling quantum and topological matter, OAM dichroism, and resolving ultrafast charge and spin transport.

> Self-torqued beams can yield exotic EUV supercontinua with attose cond variation of the OAM.

angular momentum

Laura Rego, Kevin M. Dorney, Nathan J. Brooks, Quynh Nguyen, Chen-Ting Liao, Julio San Román, David E. Couch, Allison Liu, Emilio Pisanty, Maciej Lewenstein, Luis Plaja, Henry C. Kapteyn, Margaret M. Murnane, Carlos Hernández-García

ITTAN Excellent Group of Students, Collaborators and Advisors: Both at Home and Abroad!

JILA/CU Boulder (USA)

- ≻ Nathan Brooks
- ≻ Quynh L. Nguyen
- ➤ Dr. Chen-Ting Laio
- David E. Couch

- ≻ Allison Liu
- > Michael Tanksalvala
- > Prof. Henry Kapteyn
- Prof_Margaret Murnane

University of Salamanca (ESP)

- ≻ Laura Rego
- ➤ Dr. Julio San Román
- > Dr. Carlos Hernández-García
- ≻ Prof. Luis Plaja

ICFO (ESP)

Dr. Emilio Pisanty
 Prof. Maciej
 Lewenstein

Fu, et al. Opt. Lett. **41**, 2016 Chang, et al. Opt. Commun. **405**, 2017 Rego and **Dorney**, et. al. Science 2019 (Accepted)

Fu, et al. Opt. Lett. **41**, 2016 Chang, et al. Opt. Commun. **405**, 2017 Rego and **Dorney**, et. al. Science 2019 (Accepted)

Fu, et al. Opt. Lett. **41**, 2016 Chang, et al. Opt. Commun. **405**, 2017 Rego and **Dorney**, et. al. Science 2019 (Accepted)

Optical Control of Vis and EUV Mixed Vortex Beams: Exploiting Mixed OAM Optics to Extract Azi. Chirp

For mixed OAM beams, the angular position of the intensity "crescent" can be precisely controlled via a relative group delay between the two driving beams.

Yao, Padgett, *Adv. Opt. Photonics*, 2011 Rego and **Dorney**, et. al. *Science* 2019 (Accepted)

For mixed OAM beams, the angular position of the intensity "crescent" can be precisely controlled via a relative group delay between the two driving beams.

Yao, Padgett, *Adv. Opt. Photonics*, 2011 Rego and **Dorney**, et. al. *Science* 2019 (Accepted)

For mixed OAM beams, the angular position of the intensity "crescent" can be precisely controlled via a relative group delay between the two driving beams.

Yao, Padgett, *Adv. Opt. Photonics*, 2011 Rego and **Dorney**, et. al. *Science* 2019 (Accepted)

$$a = 2r \sin{(\phi/2)} \longrightarrow \phi = 2\sin^{-1}(a/2r)$$

Confirmation of the Extracted Azimuthal Chirp in Self-Torqued High-Harmonic Beams

Self-Torqued Light Beams: Much More Than Time-Dependent Average OAM

Self-Torqued Light Beams: Much More Than Time-Dependent Average OAM

Self-Torqued Light Beams: Much More Than Time-Dependent Average OAM

Experimental Measurement of Azimuthal Frequency Chirp in Self-Torqued EUV Beams

