Topologically Structured Extreme Ultraviolet Beams with Designer Angular Momenta for Novel Magnetic Spectroscopies and Imaging Kevin M. Dorney¹, Laura Rego¹, Nathan J. Brooks¹, Jennifer L. Ellis¹, Julio San Román², Chen-Ting Liao¹, Daniel D. Hickstein¹, Dmitriy Zusin¹, Christian Gentry¹, Emilio Pisanty³, David E. Couch¹, Justin M. Shaw⁴, Antonio Picón², Stefan Witte⁵, Maciej Lewenstein³, Luis Plaja², Carlos Hernández-García², Henry C. Kapteyn¹, and Margaret M. Murnane¹ ¹JILA - Department of Physics, University of Colorado and NIST, Boulder, Colorado, 80309, USA ²Grupo de Investigación en Aplicaciones del Láser y Fótonica, Departamento de Física Aplicada, **Sciences** Universidad de Salamanca, E-37008 Salamanca, Spain ³ICFO, Institut de Ciencies Fotoniques, Av. Carl Freidrich Gauss 3, 08860 Castelldefels (Barcelona), Spain

⁴Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA ⁵Advanced Research Center for Nanolithography (ARCNL), Science Park 110, 1098 XG Amsterdam, The Netherlands

ABSTRACT & MOTIVATION

• **MOTIVATION** - Lightwave-driven magnetism promises technologies such as petahertz spintronics¹ and optically σ readable/writable nanoscale magnetic memory devices². Although promising, realization of these technologies has 🖉 🐽 been hindered by a lack of a complete understanding of ultrafast (fs-ps)³, nanoscale magneto-optical interactions.

OPTICAL SPIN GRATINGS FOR HYPERSPECTRAL, MAGNETIC IMAGING IN THE EXTREME ULTRAVIOLET⁴

of Photonic

• **SCIENCE OPPORTUNITY** - Resolving these processes demands spectroscopic and imaging modalities with element/spin specificty, few-fs time and few-nm spatial resolution. Extreme ultraviolet (EUV) and soft x-ray (SXR) light produced via high-harmonic generation (HHG) possess all of these qualities, making them promising sources for uncovering the intricate mechanisms of ultrafast magnetics.

• **SUMMARY OF WORK** - By tailoring the HHG emission process, we realize novel, flexible, bright, tabletop-scale EUV light sources with non-trivial optical topologies for new avenues in magneto-optical spectroscopies and imaging.

EUV BEAMS AND ATTOSECOND PULSES WITH **Designer Spin and Obrital Angular Momentum⁵**

LCP Vortex RCP Vortex

30

32

 $n_1 + n_2 = odd$

H22 H23

34

♦ Exp. RCP

🔷 Exp. LCP 🔾

¥ Theory LCP 🔼

A birefringent Fourier transform interferometer is employed to generate phase-locked EUV sources with orthogonal polarizations. The overlap of these sources generates an optical, EUV spin grating that can be exploited for quantitative, hyperspectral imaging of magnetic and chiral systems.

SPATIALLY RESOLVED SPECTROSCOPY OF MAGNETIC THIN FILMS

$$A = \frac{(I_{M^+} - I_{M^-})}{(I_{M^+} + I_{M^-})} = \langle \sigma \rangle_{EUV} = \tanh(2k_{EUV}\Delta\beta)$$

20nm Co thin filr

HYPERSPECTRAL MAGNETIC **S**PECTROSCOPY AND **MAGING**

• Scanning time-delay between the EUV sources yields an interferogram at each pixel • Fourier inversion yields a hyperspectral map of the element-specific magnetic asymmetry

THE SELF-TORQUE OF LIGHT⁶

Driving the HHG process with a time-delayed vortex pulse pair yields EUV beams and attosecond pulses with a new optical property: time-varying OAM (the self-torque of light)

CONCLUSIONS & OUTLOOK

Tabletop EUV light produced via HHG provides short-wavelength light with designer topologies for next generation magnetic spectroscopy and imaging of ultrafast, nanoscale spin dynamics.

- EUV SPIN GRATINGS FOR HYPERSPECTRAL MAGNETIC IMAGING
- EUV beams and attosecond pulses with Designer SAM and OAM

• EUV beams and attosecond pulses with dynamic, time-varying OAM

REFERENCES

Siegert, F. et al. *Nature* **571**, 240-244 (2019). ²Nagaosa, N. et al. *Nat. Nano.* **8**, 899-911 (2013). ³Tengdin, P. et al. *Sci. Adv.* **4**, eaap9744 (2019).

⁴Ellis, et al. *Optica* **5**, 479-485 (2018). ⁵Dorney, K. M. et al. *Nat. Photoni.* **13**, 123-130 (2019).

Chiral magnet

⁶Rego, L. et al. *Science* **364**, eaaw9486 (2019).