

	Conclusions
	SERS proved to be a rapid, precise, and facile technique for determining CET content despite the presence of an extensive biological matrix.
	The CET content in the crude PM and cytosol suggest a rapid, Nerstian equilibrium (244 µM calculated from Nerst equation).
	These data also suggest that CET has a higher affinity for membrane proteins, which have a higher abundance of P-type ATPases, such as the NKA.
	On going experiments will attempt to further track CET in the NKA and other protein extracts.
	Furthermore, novel cellular extraction techniques are being developed to prevent CET loss in insoluble cell fractions.
	Acknowledgments
	A portion of this research was presented at the Biological Transport Meeting in Lake Cumberland, KY.
d	I.E.P.S graciously acknowledges the WSU Chemistry Department Start-Up fund.
	References
	¹ Krane, B. D.; Fagbule, M. O.; Shamma, M.; Gözler <i>J. Nat. Prod.</i> , 1984 , <i>47</i> , 1-43. ² Lauf, P. K.; Heiny, J.; Meller, J.; Lepera, M. A.; Koikov, L.; Alter, G. M.; Brown, T. L.; Adragna, N. C. <i>Cell. Physiol. Biochem.</i> 2013 , <i>31</i> , 257 – 276.
	³ Dorney, K. M.; Sizemore, I. E. P.; Alqahtani, T.; Adragna, N. C.; Lauf, P. K. <i>Cell. Physiol. Biochem.</i> 2013, 32, 146 – 156.
	⁴ Xu, H.; Bjerneld, E. J.; Käll, M.; Börjesson, L. <i>Phys. Rev. Lett.</i> 1999 , 83, 4357 – 4360.
	 ⁵Creighton, J. A.; Blatchford, C. G.; Grant, A. M. <i>J. Chem. Soc. Faraday Trans.</i> 1979, 275, 790 – 798. ⁶ Trefry, J. C.; Monahan, J. L.; Markopolous, M. M.; Arnold, Z. S.; Wooley, D. P.; Pavel, I. E. <i>J. Am. Chem. Soc.</i> 2010, <i>132</i>, 10970 – 10972.