	usin
WRIGHT STATE	Kevin M. Dorney,
IINIVFRCITY	а
Background:	
 Surface-enhanced Raman spectroscopy (SERS) is an embodiment of Raman spectroscopy that provides enormous signal enhancement while retaining all molecular specificity of regular Raman scattering¹. The SERS effect occurs when the incident electromagnetic field of the laser induces localized surface plasmon resonance (LSPR) in silver nanoparticles (AgNPs)^{1,2}. The size, shape and aggregation geometry of the AgNPs, along with excitation wavelength, are among the most important parameters responsible for the large signal enhancement observed in SERS³. Main Scientific Goal: To determine the optimum combination of AgNP size and excitation wavelength for single-molecule detection . Surface Plasmon Resonance e cloud 	Synthesis and Characteriza AgNPs: > A large volume (4.0 L) of AgNPs was synthesized of through the aqueous reduced AgNO ₃) with sodium borod > The resulting colloidal so via ultraviolet-visible abso (UV-VIS), Raman spectrod A $A = \int_{0.20}^{0.20} \int_{0.15}^{0.20} \int_{0.01}^{0.05} \int_{0.01}^{0.$
<i>hv₀</i> <i>i i i i i i i i i i</i>	0.00- 300 400 500 60 Wavelength
Scientific Aims: <u>Specific Aim #1:</u> Synthesize and characterize a large volume (4.0 L) of Creighton colloidal AgNPs of moderate size distribution.	
<u>Specific Aim #2</u> : Size-select, concentrate, and purify the original Creighton AgNPs via "green" tangential flow filtration (TFF), quantify the nanosilver concentrations by inductively coupled plasma optical emission spectroscopy (ICP-OES), and confirm fractionation using transmission electron microscopy (TEM).	Figure 2. (A) Experimental s Creighton AgNPs ⁶ . (B) UV-V Raman spectrum, (D) TEM s micrograph) ⁶ , (E) XRD powo
<u>Specific Aim #3</u> : Characterize the SERS and SERRS enhancement as a function of AgNP geometry and excitation wavelength (632.8 nm and 532.1 nm) using a Raman reporter, rhodamine 6G (R6G).	
 Concentration, Size-Selection, and Purification of AgNPs: ➢ The TFF procedure yielded two highly concentrated, unfunctionalized AgNP So nm Polysulfone Filter (S A 200 am²) 	Estima ≻ AgN of su
suspensions: • $A 50 \text{ pm}$ retentate (Aq)	B redu the
• A 30 kD retentate (Ag _{30R2}) (Figure 6C & F).	m)
The TFF process retained	Table Creigh
61% of the total AgNPs in the Ori. solution.	(J _{30R1})
Figure 6. TFF scheme employed to fractionate and concentrate the Creighton colloid.	930R2)
Quantification of AgNP Size and Concentration in TFF Suspensions:	Estim ≻⊤
A B B B B B B B B B B B B B B B B B B B	Ori en m diameter
y=18.10275x +51.855 R ² =0.99857	e = 12.8 nm.
Average	9 30R2 m diameter e = 19.3 nm. r
$\int_{0}^{5} \int_{0}^{5} \int_{0}^{5} \int_{0}^{5} \int_{0}^{5} \int_{0}^{1} \int_{0$	S
Figure 7. (I) ICP-OES standard calibration curve constructed using seven silver standards. (II) TEM micrographs ⁴ and the corresponding	

size histograms for two of the TFF-fractionated suspensions of AgNPs utilized in the SERS/SERRS measurements

Routes to Single-Molecule SERRS-Based Detection using Concentrated, Unfunctionalized Silver Nanoparticles

vin M. Dorney, Joshua D. Baker, Austin Williams, Adam C. Stahler, Seth Brittle, Trevor M. Bobka, and Ioana E. P. Sizemore

^aDepartment of Chemistry, Wright State University, Dayton, Ohio 45435-001, U.S.A.

thesis and Characterization of Creighton Colloidal

A large volume (4.0 L) of polydisperse, colloidal QNPs was synthesized using the Creighton method⁵ nrough the aqueous reduction of silver nitrate (1 mM of $_{3}$ with sodium borohydride (2 mM of NaBH₄).

The resulting colloidal suspension was characterized via ultraviolet-visible absorption spectrophotometry UV-VIS), Raman spectroscopy, X-ray diffraction

ure 2. (A) Experimental setup for the synthesis of ighton AgNPs⁶. (B) UV-VIS absorption spectrum, (C) nan spectrum, (D) TEM size histogram (Inset: TEM ^rograph)⁶, (E) XRD powdered diffractogram of AgNPs.

Three-step TFF based Filtration of Creighton AgNPs:

>The original AgNP suspension (Ori) was subjected to a 3-step TFF fractionation and purification procedure, according to the scheme in Figure 6.

➤The resulting TFF solutions were then characterized by ICP-OES, Raman spectroscopy, TEM, and UV-VIS to confirm the size-selection and concentration capabilities of the TFF procedure.

Figure 5. LabRamHR800 system (Horiba, Inc.). Acquistion parameters: 632.8 nm He-Ne (SERS) and 532.1 nm diode-pumped Nd:YAG (SERRS) excitation, 15 mW laser power at sample, 300 μ m confocal hole, 3 s integration time.

Results & Discussion

Estimating the Percentage of R6G Molecules Absorbed on AgNPs:

> AgNPs effectively "quenched" the fluorescence of surface-complexed R6G. This resulted in a reduced emission intensity when compared to the emission of the R6G bulk solution.

 $\left(\frac{I_{R6G,SERS \ sample}}{I_{I}} \times 100\%\right)$ $C_{R6G,AgNP \ surface} = C_{R6G,Bulk} \left| 100\% - \right|$

Table 1. Calculated Adsorption Ratios of R6G on to
 Creighton AgNPs

SERS/SERRS Substrate	Percentage of R6G Absorbed onto AgNPs
Original Colloid	79.9%
(Ori.)	(10 ⁻⁹ M of R6G)
50 nm Retentate	92.5%
(Ag _{50R})	(10 ⁻⁹ M of R6G)
30 kD Retentate	91.6% (10 ⁻⁹ M of B6G)

Estimating the SERS and SERRS Signal Enhancement Factors:

- ➤ The C-C-C backbone stretching of the R6G xanthine ring at 611 cm⁻¹ was utilized as a marker band to quantify the SERS/SERRS signal enhancement for each AgNP size range.
- > The lowest SERS detection limit was 10^{-9} M of R6G (Ag_{50R} substrate).
- \succ The lowest SERRS detection limit was 10⁻¹⁵ M of R6G (all substrates)
- \succ The analytical and surface enhancement factors⁸ (AEF and SEF, respectively) were estimated to determine the overall SERS/SERRS signal enhancement

$d\sigma_{R6G,SERS}$	SEF8	AEF
$AEF = \frac{d\sigma_{R6G,Raman}}{d\sigma_{R6G,Raman}} \times \frac{t_{SERS}}{t_{SERS}}$	$C_{\rm R6G \ on \ AgNP \ Surface}$ o	C _{R6G,Solut}

Experimental Methods

Figure 3. (I) KrosFlo Research II*i* TFF system. (II) The three hollow fiber filter modules utilized in this study.

Fluorescence Emission Spectroscopy:

> The absorption of R6G onto AgNPs in the Ori, Ag_{50R} , and Ag_{30R2} suspensions was quantified by measuring its fluorescent emission (530 nm excitation) in the presence and absence of AgNPs.

Figure 4. (A) Cary Eclipse fluorescence spectrophotometer (Agilent Technologies). (B) 710-ES ICP-OES spectrometer (Varian, Inc.). (C) Miniflex II X-ray diffractometer (Rigaku Corp.)

SERS and SERRS Measurements:

 \succ Solutions of known concentrations of R6G (10⁻⁶ to 10⁻¹⁵ M) were incubated with Ori, Ag_{50R} , Ag_{30R2} , and potassium bromide (1.0 M of KBr, a "hot-spot" promoter)⁷. SERS/SERSS scattered photons were collected in a 180-degree backscattering geometry after 24 hours.

Spectral Data Analysis:

1) Spectra were baseline-corrected using a BSpline interpolation mode in Origin Lab 8.5 software.

2) The magnitude of the SERS/SERRS signal was quantified via integration of the 611 cm⁻¹ marker band of R6G (*i.e.*, C-C-C backbone stretching).

3) The analytical and surface enhancement factors⁸ (AEF and SEF, respectively) were calculated for each size-selected AgNP solution, with respect to excitation wavelength.

Figure 8. Fluorescence emission spectra of R6G in bulk solution and absorbed onto the AgNPs in the (A) Ori., (B) Ag_{50R} , and (C) Ag_{30R2} suspensions.

6-fold lower detection limit. Spectra are intensity shifted for clarity.

COLLEGE OF SCIENCE AND MATHEMATICS department of CHEMISTRY

	Co	nclusio	ons 🕂	
The largest AE Ag _{50R} substrate with an 64 nm	F and SEF e (<i>i.e.</i> , AgN average d	⁻ values we Ps in the 5 iameter).	ere observe 50-100 nm s	d for the size range
Table 2. AEF a	nd SEF fo	r AgNP Su	spensions i	n this Study
SERS/SERRS Substrate	SERS Mea	surements	SERRS Me	asurements
Original Colloid	AEF 2.6 x 10 ⁴	2.1 x 10 ⁴	AEF 1.57 x 10 ⁹	1.25 x 10 ⁹
50 nm Retentate (Aq _{50R})	2.2 x 10 ⁶	2.1 x 10 ⁶	2.85 x 10 ⁹	2.64 x 10 ⁹
30 kD Retentate (Ag _{30R2})	1.1 x 10 ⁶	1.0 x 10 ⁶	2.2 x 10 ⁹	2.0 x 10 ⁹
quantitatively	explain the	observed	s being impl AgNP size	lemented to and excitati
quantitatively wavelength de nanogap.	explain the ependence	modeling is observed of the EM wledgr	s being imp AgNP size field enhan nents	lemented to and excitati cement at t
 quantitatively wavelength de nanogap. ➤ We greatly ac assistance in Creighton Agl Labs system. ➤ This work was 	explain the explai	modeling is observed of the EM wledgr e Dr. David the XRD di Dr. Kanel fo	s being imp AgNP size field enhan nents Grossie for ffractogram or the use of Sizemore's	lemented to and excitati cement at t f his of the f the Spectro start-up gra